
w o ( [ )  = - ( l  - a ) - ' [ 0 . 5 ( l  ~ - t )  - a ( ~  - 1 ) ] ,  

wl( [ )  = - - ( 1 2 ( 1  - -  a ) ) - ~ [ [  a - -  6a~  ~ -+- (6a ~ + l S a  - -  9 ) [  4 - -  ( 8 a '  + 

+ 24a  ~ - -  ] 2 ) ~  a + ( t 2 a  4 + i 2 a  a - -  24a  + t 5 ) [  ~ - -  (24a  4 - -  4 8 a  ~ -+- 

-5 30a )~  + 12a 4 - -  4 a  ~ - -  80a"  + 3 0 a  - -  7 ] .  

Here Wo(~) is t h e  classical solution for the isothermal flow of a viscoplastic medium 
obtained by Volarovich and Gutkin [7]. 
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HEATING IN THE DEFORMATION OF A STRUCTURED FLOWING SYSTEM 

L. M. Buchatskii, S. V. Maklakov, 
A. M. Stolln, and S. I. Khudyaev 

UDC 532.1.35 

T h e  heating of a liquid by deformation may alter the flow curve (the relation between 
the stress and the shear rate). The relationship may become nonlinear even for a Newtonian 
liquid. This is related for example to the phenomenon of hydrodynamic thermal explosion 
[1, 2]. In the rheological processing of viscometric data, it is important to distinguish 
the heating effect from the effects of the internal properties of the liquid. For this pur- 
pose, either the experiment should be done under certainly isothermal conditions, which re- 
stricts the measurement range, or allowance for the heating must be made in the calculation 
of the characteristics. The latter is simplest to provide when there is spatial homogeneity 
in the temperature, which occurs for example in a constant-pressure (moment) viscometer [3]. 

Here we examine the behavior of a structured flowing system under conditions of heating 
and we distinguish the physically distinct flow states and determine the parameter ranges 
corresponding to the different types of theological curve, and we also define critical con- 
ditions for structural ignition and extinction and for hydrodynamic thermal explosion in 
structured systems. 

i. Formulation of the Problem. We consider the nonisothermal flow of a two-component 
liquid with mutual conversion of the components [4, 5]. The mathematical formulation in- 
cludes not only the rheological and kinetic equations [4, 5] but also the heat-balance equa- 
tion, which incorporates the dissipative heat production, the heat produced during the struc- 
tural transformations, and the heat lost through the side walls: 

? = {afolexp[~l(T -- To)] ~ (1 a)Fo:exp[c,)~(T--To)])r; (i,i) 
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c,o'r = ~ - : ( s / v ) ( r  - ~o) + q'~, 

(1.2) 

(1.3) 

where �9 and ~ are the stress and shear rate, Fouare the component fluidities, a is the pro- 
portion of the component with the smaller fluidity, mi is a constant characterizing the ac- 
tivation energy of viscous flow for component i, R is the universal gas constant, T is ab- 
solute temperature, To is the environmental temperature, a is the effective heat-transfer 
coefficient, S and V are the surface and volume of the liquid, c and P are specific heat 
and density, kzo and kao are the rate constants for the destruction and recovery of the 
structure correspondingly, E i is the activation energy for these processes, p and q are 
constants characterizing correspondingly the destruction rate and the orientation rotation 
for a structural unit, t is time, and Q is the heat of the structural transformations. 

The temperature dependence of the rate constants k i is taken in Arrhenius form: 

k i = kio exp ( - - E / R T ) .  

Reynold's law is used for the temperature dependence of the viscosity: 

~i = ~o~ exp[--~i(T -- To)]. 

We consider the effects of the shear deformation only on the structure disruption. 

Equations (1.1)-(1.3) assume that the characteristics of the liquid do not have a spa- 
tial distribution (are homogeneous). 

We introduce dimensionless variables and parameters convenient for the subsequent 
analysis: 

D =  , o =  T Fo.~, O =  R ~  ' 

~. = Fo,/Foz, [~ = RTo/E~., ul = m~RT~/E=, ~ = (Ex - -  E~)/E=, 

P 6= Ez ~ ( EI-E~ ) 
= , M = exp a T  ~ 

Fo., ] / 'q- '~o '  = (s/v) qrofo~ 

We also introduce the characteristic times of heat loss to and heat production tz together 
with the time of structural transformation t2: 

to = cp/~(S/V), t, = CpToqFoJE2, t., = t/k2o. 

Then (1.1)-(1.3) take the form 

D = [a% exp (ulO) q- (i  - -  a)exp(uzO) ]a, 

t o a =  x ' w [ ( ~ + t ) e + ~ a  
. - -  ae. , t . , [  t .--?[~O + D ' J ' k ' ( l - - a ) e x p ~ , t - " + " ~ )  ' 

�9 e 

6 = aD/t~ - e/to + q , ,EJ (cpRr ; ) .  

2. Qualitative Analysis. The qualitative analysis is naturally performed with certain 
simplifying assumptions. We assume that u2 = i (this is equivalent to assuming similarity 
in the activation energies for viscous flow and structuring). The effects of % and ~ have 
been discussed previously [4, 5], and for convenience and to provide some minor simplifica- 
tions we put ~ = ~ = 0. We are subsequently interested in the stationary system of equations, 
which takes the form 

D = (I -- a)~ exp e; (2.1) 

1 -- a = ax exp[(~O+ O~)l(i + 80)1; (2.2) 

O = 6oD. (2.3) 

Here the main attention is given to the effects on the theological curve a(D) from the param- 
eters ~ and 6, which have the meaning of the intensity of the structural transformations 
and the dissipative heat production correspondingly�9 The limiting case 6 = 0 corresponds to 
isothermal flow and has been considered in [4, 5]. We eliminate a and O from (2.2) and (2.3) 
to get ~(D) in the inexplicit form 
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( ~aD + D: ) (2.4) ~ , , , , , e - - ( k ' t + t ) D e x p ( - - ~ D ) = 0 ,  k =  xex"e~ i.+~6eb ,, 

The condition for a turning point on the e(D) curve, de/dD = 0, and =he equivalent one 
a~/aD = 0 after cer=ain =ransformations are pun as 

(k + t ) ( t  - -  6~O) = [O~(2 + -B6aD)  + ~8~D]( i  + Bg~D)-L  ( 2 . 5 )  

In what follows we consider the case 0<~I ; this range in ~ is =he most interesting 
from the physical viewpoint. Positive values for ~ mean that in the absence of deformation 
=he activation energy for structure destruction is greater than that for recovery. If the 
preexponential factors are similar, this means that an initial structure exis=s in liquid for 
G = D = 0 (the rate of recovery is higher than the rate of destruction). On deformation, 
there is an effective reduction in the activation energy Et, and the destruction rate in- 
creases, so the equilibrium shifts towards the final structure. The constraint ~f In- 
volves the assumption that the ac=ivation energies E~ and E2 differ slightly. If this is 
not so, the effects Of the deformation are slight. 

With these constraints (2.5) is always soluble and in accordance with the values of ~ 
and 6 can have up to three roots in the range 0 < D < i/6u (correspondingly 0 < e < 1). 
It will be evident from what follows that the presence of three turning points indicates 
that there can be a theological curve with two maxima and one minimum. 

The boundary separating the rheologlcal curves with one and two maxima may be defined 
from the condition for degeneracy of the ~(D) curve: 

t 

O(~,O)=O, OD=O, aDD=O. 

The latter equation and the equivalent one a2~/#D~=O can be put in the form 

k { ( t  - -  O)[D2(2 + Be) + ~e]  - e ( t  + Be) ~} = ( 2 . 6 )  
= 4D ~ + 8(~ - -  BD2)(I - -  BO)/(t + BO) + O(t + BO)'. 

Using (2.3), from (2.5) and (2.6) we ge t  the explicit D~(O); relationship: 

m = - -  A + ] /"Y'C'B-- B, A = [~e - (1 - e)  ( t  + Be),'2 - 

- e ( i  + Be),12 (t - e )  - 2 ( l  + ~ep/ (2  + Be) + Be (~ - B~e~)/ 
12 (2 + BO)]I(2 + Be), ( 2 . 7 )  

B = ~ ~e~ (i + ~e) - e (i - e) (~ + ~e/~ ~ e ~ i~ + ~e) ~ (i - e~ + (i - ~ e  ~) 8 
(2 + ~e) = 

which enables us to derive the boundary in parametric form (parameter O): 

r ~o +D=(O)] (2.8) 
• l+~e .; 

6 = (k-~ + ~)D'~(O) 0 exp O. (2.9) 

In the relevant range in ~ (0 < ~ ~ I), the expression in the radical in (2.7) is posi- 
tive. In fact, for 8 " 0 the range of values where A 2 -- B >~ 0 is described by the following: 

~< (e" - 30 + 3)'-,'[4o(t - e)" ]  = ~*(e). 

The function ~* in the region O < I has the minimum r = 6.125; if one incorporates ~ ,~= 0 
numerical calculations show that ~ increases. It can also be shown that solutions of the 
form .4--~A~----B are negative in this range in ~. 

3. Rheological Curve under Self-Heating Conditions. From (2.4) we have the following 
limiting relations : 

lim(~(D)=0, l ime(D)=0.  
D-~O D-*oc 

The second relation means that there is a difference from the isothermal case, where 
~(D)--~oo for D--~oo, in that in a nonisothermal flow there is a reduction in the deforma- 
tion resistance as D increases in the range of sufficiently high shear rates [6]. 
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~is reduction may also be due to the structural transformations ~ a certain range 
in D [4, 5]. ~ere can thus be separate or combined effects from the structural and thermal 
factors. 

Parts a and b of Fig. 1 s~w the changes occurring in the rheological curve as ~ in- 
creases (the increase is with the number of the curve, 8 = 0.025 and 0.75 for cuNes 2 and 
4 correspondingly). Curves 1 in parts a and b of Fig. i correspond to iso~e~al flow (6 = 
0) but different values of • (x =0.6>• in Fig. la, and x =0.2<x,(h) in Fig. ib, and 
see [4, 5] on • 

In the general case, the o(D) curve has two ~xima (cu~e 3 ~ Fig. la and b, 8 = 0.37 
and 0.25 correspondingly). ~e first of them (at the smaller D) is due to the structural 
transformations, while the second is due to the nonisothermal flow [4-6]. ~e minimum on 
the cu~e is due to saturation in the structural transformations. ~is case occurs if the 
temperature-dependent nonlinearity in the viscosity makes itself felt after the structural 
saturation. If the temperature-dependent viscosity nonlinearity appears earlier during 
self-heating, the rheological curve can have only one turning point (cu~es 4 in Fig. la and b). 

Different forms for t~ rheological cu~es can be obtained by changing the the~al param- 
eters 8, the boundary of (2.8) and (2.9) separating the x, 8 parameter plane into regions 
corresponding to each type of curve. Figure 2a shows a calculation on this boundary. In 
region II, one gets a o(D) cu~e with two maxima, while ~ region I there is one. ~en 6 
changes, ~ accordance with the value of • one can get II-I transitions (x < x~(k}) and I-II-I 
ones (x > •163 . In the latter case, on deformation ~der nonisothermal conditions one can 
get a structural ~ximum on the theological curve, althou~ there is none such in the iso- 
thermal case (cu~es 1-3 of Fig. Ib). 

~e individual parts of the rheological curve correspond to physically different modes 
of flow in the structured liquid. As the boundary between them we ta~ the coord~ates of 
the turning points on o (D) (po~ts A, B, and C on curves 3 of Fig. la and b). ~en branch 
OA corresponds to isothermal flow, ~ to the extensive structural process, BC to flow with 
a ~xi~lly destroyed structure, and CE to nonisothermal flow. Note that in the state D = 
constant, all these flow modes are realized in sequence as D increases. 

~e can solve (2.3)-(2.5) together to dete~ine the parameter ranges corresponding to 
the different flow modes. With x fixed (x =0,2 and x =0,6), in accordance with the modes 
D = constant and o = constant, these regions may be constructed ~ the D-4 and 0-4 ;parameter 
planes. ~e extreme branches of the D(8) curve in Fig. 2b and c, correspond to maxim, 
while the inte~ediate one corresponds to a minimum on o(D). ~e D(6) curve and the straight 
lines 8 = 8, and 6 = 62 (points where the turning points fuse) separate regions where the 
structural and the~al factors influence the cu~e separately. These regions correspond to 
distinct flow states: region 1 the isothermal state, 2 the structured state, 3 the state 
with~xi~lly destroyed structure, and 4 the nonisothermal one. In the regions 6 < 6, and 6 > 8= 
(Fig. 2b and c), one cannot distinguish characteristic states, which indicates that the 
structural and thermal factors influence the flow cu~e jointly. 

important point is that the D(8) diagram for the state D = constant enables one to 
indicate the measurement range approximately corresponding to isothe~al conditions: region 
i. ~e boundary of this region shows that this range increases as 8 decreases, which can 
be obtained by reducing the gap between the cylinders in a rotational viscometer, and also 
by increasing the environmental temperature. 

4. Critical Phenomena. In the state o = constant under nonisothe~al conditions, one 
can also get critical phenomena such as hydrod~amic the~al e~losion [i, 2] (the stationary 
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state vanishes) or the hydrodynamic analogs of ignition and extinction [6, 7] (step transi- 
tions from one stationary state to another with small changes in the parameters). Here 
usually the critical conditions for the forward and reverse transitions do not coincide and 
there is hysteresis. Such transitions are possible even in the isothermal case for a struc- 
tured liquid [4, 5] and are due to the structural transformations. This critical phenomenon 
with hysteresis may be called structural ignition and extinction from the analogy. 

Nonisotharmal flow in a structured liquid causes the self-heating to reduce the viscos- 
ity and intensify the structural transformations. There are two mechanisms whereby the heat- 
ing influences this process. First, there is the kinetic one, where the structural process 
is accelerated because the rate constants are dependent on temperature. Secondly, there 
the hydrodynamic one, in which the changes in the hydrodynamic characteristics (~ and D) 
because of the temperature dependence of viscosity also accelerate the structural process. 
These mechanisms result for example in a region where the stationary states are not unique~ 
which is characteristic of ignition-extinction phenomena (region II in Fig. 3a and b) for 
6 > 6~, where the stationary state is unique in the isothermal case (~ = 0). 

The a~(~) and as(~) curves in parts a and b of Fig. 3 represent the loci corresponding- 
ly of the thermal and structural maxima, while u2(~) represents the minimum. Together with 
the straight lines ~ - ~ and ~ = ~2, these curves distinguish regions corresponding to dif- 
ferent flow modes: region I of low-temperature flow, II nonunique stationary states, 
III flow with maximally disruptedstructure, and IV the absence of stationary modes. 

There is always a unique stationary state here when D = constant, whereas if o = con- 
stant we see that:there may be nonuniqueness or the absence of Stationary states. The a~(~), 
~2(~), and ~a(6) curves (Fig. 3) define the critical conditions for changes between modes. 
In particular, the critical condition for loss of the stationary state (explosion) is de- 
fined by the curve 

a ,  (6) = max {a I (6), % (6)} 

(boundary of region IV). 

One can speak of hydrodynamic thermal explosion HTE only in the region a~(6) > ~3(~), 
where the structural transformations have time to occur long before the onset of effects 
from the nonisothermal flow, and one can calculate the HTE critical conditions with consid- 
erable accuracy (error less than 0.1%) by means of the expression ~,(~) = (e~)-I/2, which 
has been derived for a Newtonian liquid [6]. If the inequality is reversed, the critical 
transition into region IV is due to the thermal and structural factors. Then from (2.3), 
(2.8), and (2.9), which define the critical conditions for HTE, we get the asymptote ~,(~) 
for large 6: 

o,(6)=]/'%/(8+s~), so = 0o (k~l + l )  exp (--  Oo), ko = •  o ( 4 . 1 )  

The temperature rise preceding explosion can be calculated from 
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e ,  (~) = Oo - -  01/(6 + sO, 

O ~ O ~ s ~  ~(k o + 1 )  -1 k o + 1 '  2 Oo (ko+ i )  2 

s~ = soO o ~ - -  t "kOq- t ko+l " 

The value of Oo is found by solving the transcendental equation 
Oo = [t + ~/(ko + t)1-1. 

In practice, (4.1) and (4.2) describe o,(~) and 0,(8) satisfactorily for 8~>0.2 (error 
less than 0.5%). 

Figures 1-3 have been given for the case 8 = 0 and ~ = i, but incorporating 8 # 0 
does not result in any substantial quantitative changes in the curves (the maximum relative 
deviation does not exceed B). 
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MOTION OF A CLOUD OF HEATED PARTICLES ABOVE A HORIZONTAL 

SURFACE IN AN EXTERNAL FORCE FIELD 

G. M. Makhviladze and O. I. Melikhov UDC 532.529 + 536.46 

The motion of a system (cloud) of particles in an external force (gravity) has been 
studied experimentally and theoretically in the isothermal case where the temperatures of 
the particles and carrier medium are the same; a review and bibliography is given in [I, 2]; 
see also [3, 4]. One of the basic features of these studies was the identification of two 
different types of motion of the cloud depending on the degree of hydrodynamical or gas- 
dynamical interaction between particles via the carrier phase. In the "filtration" regime 
this interaction is small and each particle in the cloud moves independently. In the "en- 
trainment" regime, because of the friction between the phases, large-scale motion (of the 
order of the size of the cloud) of the dispersed medium with a rising flow on the periphery 
arises and the precipitating cloud is transformed into a vortex ring with continuously in- 
creasing diameter. 

Many phenomena in nature and in technological processes are accompanied by the forma- 
tion of aerosol clouds in which the temperature of the particles is higher than that of the 
ambient medium (emission from a smokestack, combustion products in fires, emission of aero- 
sols in the eruption of volcanoes). The initial temperature differential leads to new fea- 
tures in the evolution of the cloud of particles. As a result of interphase heat exchange 
the gas in the cloud is heated and expands, carrying along particles with it. As a result, 
for a sufficiently high concentration of particles, the cloud size increases in the initial 
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